

Разработка ГОСТ 27577-202_ «Газ природный топливный компримированный для двигателей внутреннего сгорания. Технические условия»

Докладчик - 3.М. Юсупова

Зам. нач. лаборатории физико-химических свойств и контроля качества природного газа

Разработанный стандарт включает следующие разделы:

- 1 Область применения;
- 2 Нормативные ссылки;
- 3 Термины и определения;
- 4 Технические требования;
- 5 Требования безопасности;
- 6 Требования охраны окружающей среды;
- 7 Правила приемки;
- 8 Методы испытаний;
- 9 Гарантии поставляющей стороны

Раздел 1. Область применения:

- 1.1 Настоящий стандарт распространяется на компримированный природный газ, применяемый в качестве топлива для двигателей внутреннего сгорания.
- 1.2 Настоящий стандарт устанавливает требования к физико-химическим показателям компримированного природного газа, указанного в 1.1.

Раздел 3. Термины и определения:

- 3.2 компримированный природный газ; КПГ: природный газ, прошедший специальную подготовку для использования в качестве топлива для двигателей внутреннего сгорания.
- 3.3 автомобильная газонаполнительная компрессорная станция; АГНКС: Совокупность машин, оборудования, зданий, сооружений и систем инженерно-технического обеспечения, объединенная в единый технологический цикл процессов производства, накопления и выдачи компримированного природного газа.
- 3.5 **Криогенная автозаправочная станция (КриоАЗС)** автозаправочная станция, технологическая система которой предназначена для заправки баллонов и криогенных баков топливной системы транспортных средств СПГ и КПГ, получаемым путем регазификации СПГ.
- 3.6 **Передвижная КриоАЗС** Крио-АЗС, технологическая система которой характеризуется наличием совмещенного блока транспортировки, хранения, заправки СПГ и/или КПГ, получаемым путем регазификации СПГ, выполненного как единое заводское изделие.

Раздел 4. Технические требования

Таблица 1 – Физико-химические показатели КПГ

	Наименование показателя	Норма		Метод
	Паименование показаптеля	Минимум	Максимум	испытания
1	Молярная доля компонентов (компонентный состав), %	Не нормируют, определение обязательно		По 8.1
2	Молярная доля кислорода, %	-	1,0	По 8.1
3	Молярная доля негорючих компонентов (суммарная), %	-	7,0	По 8.1
4	Массовая концентрация сероводорода, г/м³	-	0,020	По 8.2
5	Массовая концентрация меркаптановой серы, г/м ³	-	0,036	По 8.2
6	Объемная теплота сгорания низшая, МДж/м³ (ккал/м³)	31,80 (7600)	-	По 8.3
7	Относительная плотность к воздуху	0,55	0,70	По 8.4

Раздел 4. Технические требования

Таблица 1 – Физико-химические показатели КПГ

		Норма			
	Наименование показателя	Минимум	Максимум	Метод испытания	
8	Метановое число (расчетное)	70	_	FOCT 34704	
9	Массовая концентрация механических примесей, г/м ³			ΓΟCT 22387.4	
		-	0,001		
10	Массовая концентрация паров воды, г/м ³ :			По 8.5	
	Для климатического района I₁:				
	-зимний период		0,0015		
	-летний период		0,009		
	Для климатических районов I_2 , II_1 - II_4 (I+II) А				
	-зимний период		0,0038		
	-летний период	_	0,013		
	Для климатических районов II _{5.} II _{6.} II _{11.} IIK				
	-зимний период		0,009		
	-летний период		0,019		
	Для климатических районов II_7 - II_{10} , II_{12}				
	-зимний период		0,019		
	-летний период		0,040		

Раздел 4. Технические требования

Примечания к таблице:

- При определении соответствия качества КПГ требованиям настоящего стандарта допускается определять либо показатель 10, либо показатель 11.
- При поступлении на АГНКС регазифицированного сжиженного природного газа показатели 9 и 10 (либо 9 и 11) не определяют.
- По показателю 10 до 01.01.2026 действует норма 0,009 г/м³.

Избыточное давление КПГ в момент окончания заправки баллона транспортного средства должно соответствовать техническим условиям на АГНКС и газобаллонные средства заправки. Определение давления КПГ, заправляемого в баллон, проводят по 8.7.

Температура КПГ, заправляемого в баллон, может превышать температуру окружающего воздуха не более чем на 15 °C, но не должна быть выше 60 °C. Определение температуры КПГ, заправляемого в баллон, проводят по 8.8.

Раздел 7. Правила приемки

- Контроль качества КПГ по показателям таблицы 1 (кроме показателя 10 или 11) проводят не реже одного раза в месяц. Указанные показатели допускается контролировать по данным организации, поставляющей природный газ на АГНКС.
- Периодичность контроля КПГ по показателям 10 или 11 таблицы 1 должна быть не реже одного раза в сутки.
- Отбор проб природного газа осуществляют по ГОСТ 31370. Точка отбора пробы для определения показателя 10 или 11 должна располагаться после блока осушки газа.
- Если по результатам испытаний качество КПГ не соответствует требованиям стандарта, то проводят повторные испытания по физико-химическим показателям, по которым получены неудовлетворительные результаты. Результаты повторных испытаний считают окончательными.
- При получении неудовлетворительных результатов при повторных испытаниях заправка баллонов транспортных средств КПГ должна быть прекращена до устранения причин, вызывающих отступление от нормы, и получения удовлетворительных результатов контрольного испытания.
- Результаты испытаний КПГ отражают в паспорте качества.
- Давление КПГ в баллонах определяют после окончания каждой заправки.
- Температуру КПГ, подаваемого на заправку, определяют по требованию покупателя.

Раздел 8. Методы испытаний

• Компонентный состав (в т.ч. кислород, негорючие компоненты): методы по ГОСТ 31371.

В РФ определение кислорода до 01.01.2026 проводят электрохимическим методом по ГОСТ Р 56834 (в РФ – арбитражный метод).

• Сероводород и меркаптановая сера: методы по ГОСТ 22387.2 и ГОСТ 34723 (ГХ).

В Российской Федерации определение сероводорода и меркаптановой серы до 01.01.2026 проводят по ГОСТ Р 53367.

 Низшая объемная теплота сгорания: методы по ГОСТ 10062, ГОСТ 27193 или ГОСТ 31369. Арбитражный метод: ГОСТ 31369.

В Российской Федерации определение низшей объемной теплоты сгорания до 01.01.2026 также проводят по ГОСТ Р 8.816.

• Плотность, относительная плотность: методы по ГОСТ 17310, ГОСТ 34721 (пикнометрия) и ГОСТ 31369. Арбитражный метод: ГОСТ 31369.

Массовая концентрация паров воды: методы по ГОСТ 34711 (кулонометрический метод К. Фишера) и ГОСТ XXXXX (расчетный метод). Арбитражный метод: по ГОСТ 34711.

Состав одоранта СПМ (ЛОИТ)

Компонент	Содержание, % масс.
Этилмеркаптан	30-40
Изопропилмеркаптан	35-40
трет-Бутилмеркаптан	0,5-1,5
н-Пропилмеркаптан	8-12
втор-Бутилмеркаптан	8-16
Изобутилмеркаптан	0,1-2,0
Изоамилмеркаптан	0,1-0,2
н-Бутилмеркаптан	1 - 2
Высшие меркаптаны	1-3
Углеводороды	2-3
Метилмеркаптан (ЛОИТ)	Менее 0,5
Сероводород (ЛОИТ)	Отс.

Раздел 8. Методы испытаний

- Определение TTP_в при абсолютном давлении 7,5 МПа проводят по ГОСТ 20060. При возникновении разногласий по значениям TTP_в арбитражным является визуальный конденсационный метод по ГОСТ 20060. При проведении измерений TTP_в при абсолютном давлении, отличающемся от 7,5 МПа, пересчет результата измерений проводят по ГОСТ «Газ природный. Методы расчета температуры точки росы по воде и массовой концентрации водяных паров».
- Так как по ГОСТ XXXXX проведение пересчетов результатов измерений TTP_в на различные давления проводят в диапазоне абсолютных давлений от 0,1 до 20,0 МПа, то при абсолютном давлении КПГ в точке отбора проб более 20,0 МПа при проведении измерений TTP_в КПГ по ГОСТ 20060 следует использовать редуцирующее устройство.
- В РФ определение ТТРв до 01.01.2026 также проводят по ГОСТ Р 53763. При возникновении разногласий по значению ТТРв в РФ арбитражным является визуальный конденсационный метод, установленный в ГОСТ 20060.

Раздел 8. Методы испытаний

- Давление КПГ в баллоне транспортного средства после заправки определяют манометрами по ГОСТ 2405 класса точности не ниже 2,5 или другого типа с не худшими характеристиками, установленными на газозаправочных колонках АГНКС.
- Температуру КПГ, заправляемого в баллон, измеряют в линии заправки КПГ СИ температуры с абсолютной погрешностью не более 3 °C.

Текущее состояние разработки стандарта

Первая редакция проекта стандарта прошла процедуры рассмотрения в ТК 052 и в АИС МГС;

В настоящее время завершены сбор и обработка замечаний и предложений, полученных от организаций-членов технического комитета по стандартизации ТК 52 «Природный и сжиженные газы», а также стран-членов МГС по результатам рассмотрения первой редакции проекта межгосударственного стандарта, сформированы соответствующие сводки отзывов по результатам рассмотрения первой редакции проекта стандарта и подготовлена скорректированная редакция проекта стандарта для направления на голосование в ТК 052;

Параллельно проводится работа по согласованию проекта ГОСТ с заинтересованными Департаментами ПАО «Газпром» с целью выработки окончательной редакции, подготовленной к голосованию в соответствующих организациях.

СПАСИБО ЗА ВНИМАНИЕ!