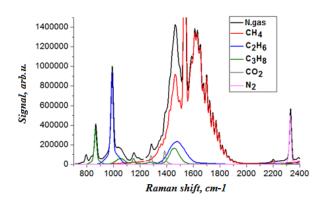
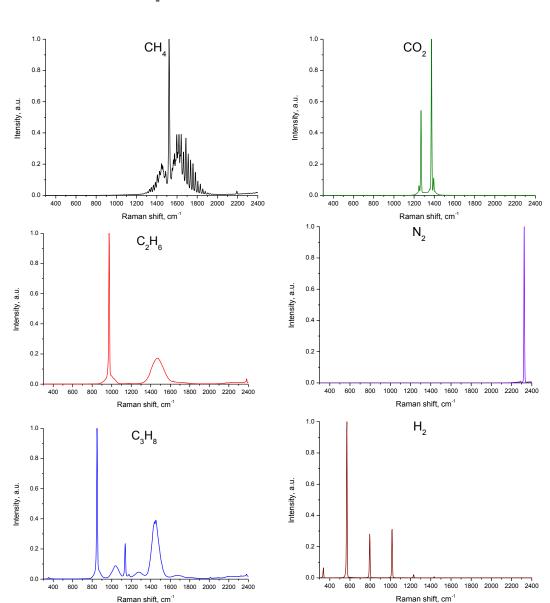
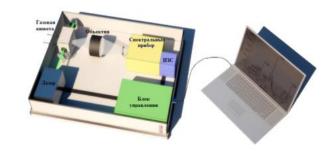

Возможности и перспективы Рамановской спектроскопии для анализа состава природного газа

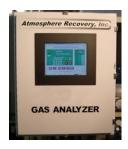

Петров Дмитрий Витальевич


Институт мониторинга климатических и экологических систем СО РАН (г. Томск)

Явление Рамановского рассеяния света



Явление заключается в рассеянии молекулами среды возбуждающего лазерного излучения на частотах соответствующих их внутреннему строению. При этом интенсивность рассеянных сигналов линейно зависит от концентрации молекул данного сорта.


Преимущества Рамановского газоанализатора

- Одновременный контроль <u>всех</u> молекулярных компонентов (включая углеводородные соединения, серосодержащие компоненты и пары воды).
- Отсутствие расходных материалов.
- Предельно малая деградация характеристик и, как следствие, отсутствие необходимости частых калибровок.
- Возможность автономной работы.
- Возможность проведения измерений с частотой до 1 Гц (1 измерение в секунду)

Современное состояние

• Основным недостатком до недавнего времени являлся низкий уровень информативных сигналов. Однако на сегодняшний день ситуация меняется.

Atmosphere recovery, Inc., USA

Kaiser optical systems, Inc., USA

ИМКЭС СО РАН/Сибаналитприбор, Томск, Россия

- + Ряд научных групп из Германии (J. Kiefer, T. Frosch), Индии (R. Sharma) и Китая (H.D. Zhu (Petrochina)) опубликовали научные статьи о попытках создания Раман-газоанализаторов ПГ за последние несколько лет.
- + Shell и Schlumberger начали разработку своих Рамановских анализаторов [Andrews A.B. et al. // US Patent № 20170184502A1. 2017.; Bryndzia L.T. et al. // URTeC. 2016. Doi: 10.15530-urtec-2016-2431773].

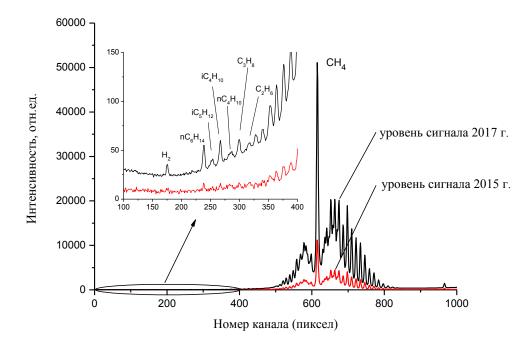
Современное состояние по нормативной документации

• ASTM D7940-2014. Standard Practice for Analysis of Liquefied Natural Gas (LNG) by Fiber-Coupled Raman Spectroscopy. [C1-C5, N2, O2: 0.02% - 100%]

• ISO/CD 23978:201907. Natural gas — Upstream area — Determination of composition by laser Raman spectroscopy. [C1-C3, N2, CO2, H2S: 0.02% - 100%]

Развитие наших работ

• 2013-2015 гг. НИОКР: «Разработка метода контроля свойств природного газа с использованием СКР-газоанализатора».


• 2016 г. Заключение ВНИИМ им. Менделеева: Оценка возможности использования метода спонтанного комбинационного рассеяния (далее – СКР) для анализа искусственных газовых смесей – имитаторов природного газа на примере макета СКР-газоанализатора, разработанного ООО «СКБ НП «Академприбор».

(«Метод СКР представляет несомненный интерес с точки зрения принципиальной возможности обеспечения одновременного количественного определения практически всех компонентов природного газа кроме гелия.

Проведенная оценка метрологических характеристик макета СКР-анализатора выявила невозможность получения достоверных результатов в диапазоне значений молярной доли компонентов менее 0,01 %, что является препятствием для рекомендации применения этого метода в целях коммерческого учета газа в сферах государственного регулирования обеспечения единства измерений»)

Развитие наших работ

• 2017 г. В несколько раз улучшена чувствительность прибора. В результате чего обеспечивается надежная регистрация компонентов с концентрациями от 0,005 %.

• 2019 г. Предполагается получение нового заключения ВНИИМ им. Менделеева о возможностях метода.

Метрологические возможности

Компонент	СКР-02 Усредненные данные анализа 10 спектров		Хроматограф	
	Концентрация (%)	Стандартное отклонение (%)	Концентрация (%)	Расширенная неопределенность (%)
Methane	91.116	0.0136	91.09	0.18
Ethane	3.652	0.0068	3.64	0.15
Propane	1.716	0.0031	1.71	0.10
n-Butane	0.434	0.0047	0.387	0.023
iso-Butane	0.334	0.0013	0.351	0.21
Carbon dioxide	0.641	0.0016	0.63	0.04
Nitrogen	1.982	0.0020	2.02	0.08
n-Pentane	0.030	0.0018	0.048	0.003
iso-Pentane	0.068	0.0023	0.064	0.004
Hydrogen	0.002	0.0010	0.0015	0.0003
n-Hexane	0.012	0.0011	0.0348*	0.0023
Oxygen	< 0.005	-	0.0048	0.0016
Water vapor	< 0.005	-	-	-
	Xar	актеристические пар	раметры	•
Теплотворная способность(МДж/м³)	35.087	0.005	35.11	0.08
Число Воббе (МДж/м³)	49.455	0.005	49.45	0.13
Плотность (кг/м3)	0.7428	0.0001	0.7436	0.0017

$$N_{\scriptscriptstyle
m min}pprox rac{1}{P\sqrt{t}}[\%]$$

где P давление природного газа [атм], t - время анализа [c].

Р [атм]	t [c]	N _{min} [%]
1	1	1
25	1	0.04
25	100	0.004
50	1000	~0.0006

Минимально детектируемая концентрация:

 $^{^*}$ Данные для C_6 +.

Проблемы

Нет производства приборов, т.к. нет соответствующего ГОСТа.

Нет ГОСТа, т.к. нет приборов...

- Необходим инвестор. Поскольку для окончания работ над этим проектом необходима ОКР (доработка отдельных узлов с целью повышения надежности, взрывозащищенность, пром.дизайн, изготовление первой партии приборов, которые можно направить на опытную эксплуатацию).
- Необходим ГОСТ «Измерение состава природного газа с помощью Рамановской спектроскопии».

Предложения

• Рассмотреть возможность создания ГОСТ «Измерение состава природного газа с помощью Рамановской спектроскопии».

• Ходатайствовать о финансировании ОКР со стороны ПАО «Газпром».

Спасибо за внимание!

Dpetrov@imces.ru

Возможность анализа СПГ

- Да, это возможно. Принципиальных ограничений нет.
- Для реализации необходима адаптация прибора (в первую очередь, кюветы), т.е. необходим НИОКР в соответствии с поставленным ТЗ.

(Задача «минимум» – получить ТЗ от заинтересованной стороны)