

РАЗРАБОТКА ГОСТ «ПРИРОДНЫЙ ГАЗ. ОПРЕДЕЛЕНИЕ РТУТИ. ЧАСТЬ 2: ПОДГОТОВКА ПРОБЫ ПУТЕМ АМАЛЬГАМИРОВАНИЯ СПЛАВА ЗОЛОТО/ПЛАТИНА»

С.А. Арыстанбекова, д-р техн. наук Главный научный сотрудник ООО «Газпром ВНИИГАЗ»

Актуальность работы

- Содержание ртути в сыром природном газе может достигать **4400 мкг/м**³.
- Сжигание природного газа с высоким содержанием ртути приводит к загрязнению окружающей среды, поэтому в странах ЕС содержание ртути в товарном газе не должно превышать 28-30 мкг/м³ (28000 30000 нг/м³).
- Наибольшую опасность соединения ртути представляют при сжижении природного газа. Для предотвращения разрушения алюминиевых теплообменников примесями ртути заводы по сжижению природного газа оборудуют установками для его демеркуризации.
- Содержание ртути в газе, подаваемом на сжижение, не более 10 нг/м³

Сравнительные характеристики НТД по определению ртути в природном газе

Стандарт	Предел обнаружения	Концентрирование	Примечание
ГОСТ 28726-90	≈ 1000 нг/м 3	Pаствор KMnO ₄	Концентрирование
ASTM D 5954–98	1 нг/м ³	Силикагель с по- крытием из золота	ртути в полевых условиях,
ISO 6978-1:2003	100 нг/м ³	Силикагель, пропи- танный йодом	определение — в лаборатории
ISO 6978-2:2003	1 нг/м ³	Нить, изго- товленная из сплава золото/ платина	

Работы ХАЛ ВНИИГАЗ по определению ртути в природном газе методом ААС - 1

- 1. А.Б. Волынский, С.А. Арыстанбекова, Т.А. Горшкова, С.Ю. Гладков. Определение примесей ртути в природном газе методом атомно-абсорбционной спектрометрии, Газовая промышленность. –2012. № 11. С. 94-97.
- 2. С.А. Арыстанбекова, А.Б. Волынский, Н.С. Миронова, А.И. Петухова, Е.А. Мазепа. Определение примесей ртути в газовых потоках Уренгойского завода по подготовке конденсата к транспорту и Сосногорского газоперерабатывающего завода. Технологии нефти и газа 2013. № 1. С. 55–59.

Работы ХАЛ ВНИИГАЗ по определению ртути в природном газе методом ААС - 2

Стандарт (ФР.1.31. 2013.14986)	Подход (прибор)	Нижняя граница определяемых концентраций	Примечание
Р Газпром 5.16 – 2012 «Природный газ. Методика определения	Прямое определение (PA-915+, Люмекс)	10 нг/м ³	Определение ртути в полевых условиях
ртути методом атомно- абсорбционной спектрометрии (холодного пара)»	Концентриро- вание на нити из сплава золото/ платина (УКР- 1МЦ, ЭКОН)	2 нг/м ³	Концентрирование и определение ртути в полевых условиях

Содержание ртути в газовых потоках Уренгойского завода по подготовке конденсата к транспорту (анализатор УКР-1МЦ)

Газовый поток (точка отбора)	Содержание, нг/м ³
Смесь газа выветривания и газа деэтанизации с установки по деэтанизации конденсата УДК-2	$5,3 \pm 0,5$
Газ сепарации ачимовского НГК с установки по деэтанизации конденсата УДК-1	82 ± 6
Газ деэтанизации смеси валанжинского (Заполярное и Уренгойское ГКМ) и ачимовского НГК	33 ± 2
Газ сепарации валанжинского НГК (Ямбургское ГКМ)	10,1 ± 0,6
Газ деэтанизации валанжинского НГК (Ямбургское ГКМ)	8.8 ± 0.5

Разработка ГОСТ ISO 6978-2:2003 (MOD) - 1 (договор № 4081-1400-14-9, этап 3)

Nº	Наименование этапа разработки стандарта	Решение	Примечания
1	Уведомление о начале разработки		28.02.2017
	стандарта		
2	Направление 1-ой редакции проекта ГОСТ Р на отзывы в ДО ПАО «Газпром»		17.02.2017
	– ООО «Газпром добыча Астрахань»	Согласовано	№ 02-6648 от 22.06.2017)
	– ООО «Газпром добыча Уренгой»	Согласовано	№ ИИ/15-342 от 02.05.2017
	– ООО «Газпром добыча Оренбург»	Согласовано	№ 001-03-7593 от 31.07.2017
	– ООО «Газпром добыча Краснодар»	Согласовано	№ 11/11.10-21/1307 от 10.03.2017
	– ООО «Газпром добыча Надым»	Согласовано	№ 02/08-2025 от 06.03.2017
	– ООО «Газпром добыча Ямбург»	Согласовано	(№ 2-31/10623 or 14.06.17
	– ООО Газпром переработка	Согласовано	№ ГП/68/2775/02 от 22.03.17
	– ООО ТюменНИИгипрогаз, –ООО «Газпром добыча Ноябрьск»	Замечания не поступали	

Разработка ГОСТ «Природный газ. Определение ртути. Часть 2: Подготовка пробы путем амальгамирования сплава золото/платина»

Разработка ГОСТ ISO 6978-2:2003 (MOD) - 2

Nº	Наименование этапа разработки стандарта	Дата (факт)
3	Направление первой редакции проекта ГОСТ в ТК-52 на голосование	17.04.2017
4	Направление OP ГОСТ в Росстандарт для размещения в АИС МГС	23.05.2017
5	Уведомление о завершении публичного обсуждения стандарта	09.06.2017
6	Направление ОР ГОСТ в секретариат ТК 52 (на голосование)	12.09.2017

На первую редакцию проекта стандарта получены отзывы от 10 членов ТК 52

ФГУП «ВНИИМ им. Д.И. Менделеева»

АО «ВНИИУС»

ОАО «ВНИПИгаздобыча»

ООО «Газпром трансгаз Махачкала»

ООО «Газпром трансгаз Нижний Новгород» (А.В. Карусевич)

ООО «Газпром трансгаз Саратов»

ООО «Газпром трансгаз Ставрополь»

ООО «Газпром трансгаз Ухта»

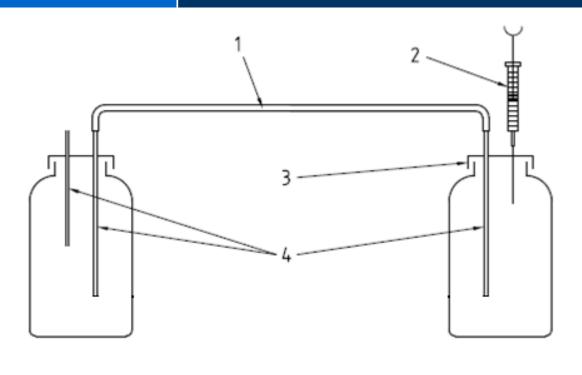
ЗАО «ИНКОМСИСТЕМ»

Секретариат ТК 52

Всего поступило 212 замечаний. Принято полностью или частично около 170 замечаний, часть из которых носит редакционный характер, отклонено 30 замечаний с обоснованием, по остальным даны пояснения.

В соответствии с полученными замечаниями и предложениями в проект стандарта внесены следующие основные изменения и дополнения:

- добавлено три раздела: 5 «Требования безопасности, охраны окружающей среды», 6 «Требования к квалификации персонала» и 7 «Общие условия выполнения измерений»;
- уточнен список НТД (раздел 2) и обозначений (раздел 4), внесены исправления в нумерацию некоторых пунктов;
- уточнены средства измерений давления, расхода, используемые при отборе проб при низком и высоком давлении;
- рисунки 1 и 4 откорректированы, подписи к ним уточнены;


- проект стандарта дополнен Приложением А «Определение ртути в природном газе методом атомно-абсорбционной спектрометрии (холодного пара) с использованием анализатора ртути УКР-1МЦ»;
- предусмотрена возможность градуировки атомно-абсорбционного и атомно-флуоресцентного спектрометров с помощью градуировочных растворов, приготовленных из стандартных водных растворов ионов ртути, или генератора паров ртути, или термодиффузионного генератора ртути с источником микропотока ртути ИМ-Hg 1-го разряда;
- приведены диапазоны градуировочных зависимостей (с указанием массы ртути в дозируемом объеме ртутевоздушной смеси), приведена формула для расчета градуировочного коэффициента;

– по предложению ФГУП «ВНИИМ им. Менделеева» исключен раздел 15 «Контроль качества результатов измерений при реализации методики» по ГОСТ Р ИСО 7870-2-2015 и РМГ 76-2014, взамен добавлен пункт 14.4 «Контроль правильности результатов измерений». В качестве образца для контроля точности (правильности) результатов измерений использованы ГСО растворов ртути или известные объемы насыщенных паров ртути по процедуре, изложенной в 12.4.1.

В случае применения методики в сфере государственного регулирования обеспечения единства измерений в данном пункте указано, что контроль правильности результатов измерений проводят с использованием термодиффузионного генератора с источником микропотока ртути.

1 - трубка из ПВА; 2 газонепроницаемый стеклянный шприц; 3 – навинчиваемая крышка с мембраной из силиконовой резины с покрытием из политетрафторэтилена; 4 – иглы из нержавеющей стали Рисунок 6 – Аппаратура для получения насыщенного парами ртути воздуха

Аналогичную градуировку используют в ГОСТ Р ИСО 20552-2011 «Воздух рабочей зоны. Определение паров ртути. Отбор проб с получением амальгамы золота и анализ методом ААС или АФС»

Nº	Технические условия	Наименование	
[8]	Технические условия ШДЕК	Рабочий эталон 1-го разряда - генератор	
	418313.009-2010 ТУ	газовых смесей ГГС модификация ГГС-Т	
[9]	Технические условия ШДЕК	Источник микропотока ртути ИМ-Hg	
	418319.010-2014 ТУ		
[10]	Технические условия ТУ	Генератор паров ртути в воздухе ГПР-2	
	4276-014-01422944-99		

Особенности работы генератора газовых смесей ГГС в комплекте с источником микропотока ртути ИМ-Hg (производство ООО «Мониторинг» - ФГУП «ВНИИМ»)

- 1. Высокая стоимость (725 тыс. руб.)
- 2. Ежегодная платная поверка во ФГУП «ВНИИМ»
- 3. Стационарный прибор (вес 15 кг).
- 4. Выход на рабочий режим около 2 суток.
- 5. Неэкологичность.

Показатель	ИМ-1	ИМ-3
Максимальная производительность ИМ по		
ртути, нг/мин	0,1	100
Выброс ртути в окружающую среду, нг/час	6	6000
Выброс ртути в окружающую среду, нг/2 суток		
(1 точка градуировочного графика)	288	288000
Выброс ртути в окружающую среду, мкг/2 суток		
(1 точка градуировочного графика)	0,288	288

Обсуждение проекта ГОСТ ISO 6978-2:2003 (MOD)

Голосование по проекту ГОСТ ISO 6978-2:2003 (MOD) в ТК 52

По результатам голосования был только 1 голос «против» – ФГУП «ВНИИМ».

После внесения поправок голосов «против» нет.

Проект ГОСТ ISO 6978-2:2003 (МОD) был разослан членам Евразийского совета по стандартизации, метрологии и сертификации (EACC) в июне 2017 г.

От Госстандарта Республики Беларусь получено 12 замечаний, которые в основном носят редакционный характер. Из них два замечания отклонены, по двум замечаниям даны пояснения. Остальные замечания приняты полностью или частично.

Разработка ГОСТ ISO 6978-2:2003 (MOD) - 3

Nº	Наименование этапа разработки стандарта	Дата факт (план)
7	Заключение филиала ФГУП "ВНИИФТРИ" по результатам метрологической экспертизы проекта ГОСТ	03.11.2017
8	Заключение ТК 52 по проекту ГОСТ	15.11.2017
9	Направление ОР ГОСТ с заключением ТК 52 во ФГУП "ВНИИ СМТ" для проведения экспертизы, издательского редактирования	17.11.2017 (20.10.2017)
10	Передача в Деп. 123 ПАО «Газпром» согласованных ФЗ отчетных материалов с копией приказа об утверждении ГОСТ	(01.07.2018)

Центральный офис ООО «ВНИИГАЗ» п. Развилка, Московская область internet: www.vniigaz.ru intranet: www.vniigaz.gazprom.ru e-mail: vniigaz@vniigaz.gazprom.ru телефон: (+7 495) 355-92-06 факс: (+7 495) 399-32-63

СПАСИБО ЗА ВНИМАНИЕ

Филиал ООО "ВНИИГАЗ" - Севернипигаз ул. Севастопольская, 1"а", г. Ухта, Респ. Коми, РФ Тел/факс (+7 2147) 3-01-42 Газсвязь: 787-748-70, 787-723-11 e-mail: sng@sng.vniigaz.gazprom.ru

Отдел по научному и техническому сопровождению комплексного освоения месторождений полуострова Ямал и прилегающих акваторий г. Салехард